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Abstract 

Pesticides are widely used to control the pest. Toxicities of pesticides occur in the animal 

body in different ways including oxidative stress. During the pesticide metabolism reactive 

oxygen species (ROS) are produced which can irreversibly oxidize the major biological 

molecules leading to the oxidative stress. Antioxidants inhibit oxidative damage to neutralize 

free radicals by donating electrons. They catalyze the breakdown or conversion of ROS into 

more stable components by various biochemical pathways. The antioxidant defense system 

comprises of various enzymatic and non-enzymatic antioxidants. The major enzymatic 

antioxidants include superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 

(GPx), glutathione reductase (GR), glutathione S-transferease (GST) and xanthine oxidase 

(XOD) whereas glutathione, vitamins (vitamin C and E), β-carotene, uric acid, melatonin are 

most abundant among the non-enzymatic antioxidants. During the detoxification processes an 

alteration in the cellular ROS and enzymatic and non-enzymatic antioxidant components may 

occur in the animal body which indicates the unambiguous oxidative stress biomarkers in the 

pesticide toxicity.  

Key words: pesticides, ROS, oxidative stress, enzymatic antioxidants, non-enzymatic 

antioxidants, biomarkers   

 

 

Introduction 

 

Synthetic chemical pesticides are widely used to control pests and prevent various plant 

diseases. In spite of numerous benefits, the use of pesticides brings also substantial hazard to 

the public health and environment. Pesticides can be classified on the basis of their chemical 

structure like organophosphates, organochlorines, carbamates, synthetic pyrethroids etc [1]. 

Pesticide toxicities occur due to inhibition of acetylcholinesterase, block of sodium and 

potassium channels, oxidative stress and dysfunction in the cellular physiology resulting in 

alterations in metabolic and vital functions of the cells and ultimately the cell death includes 

cellular necrosis and apoptosis.  
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The oxidative stress develops when there is an imbalance between prooxidants and 

antioxidants ratio, leading to the production of reactive oxygen species (ROS) [2, 3]. During 

the course of pesticide metabolism, the oxidative stress is mainly attributed to the production 

of ROS in the animal body [4]. The toxicity of many pesticides is associated with the 

production of ROS, which are not only toxic themselves, but are also implicated in the 

pathophysiology of many diseases. Increased ROS production enhances the activity of the 

antioxidant defense system that degrades the excess ROS and help in the detoxification 

process and lessens the potential damages caused by the oxidative stress due to toxicity of the 

environmental pollutants [5].  

So, the objectives of the present review are to describe the pesticide induced oxidative stress 

due to the production of ROS and the role of ROS scavenging antioxidant defense system to 

alleviate such stress in the animal body. 

 

Reactive Oxygen Species 

 

Reactive oxygen species (ROS) is a term which encompasses all highly reactive, oxygen-

containing molecules, including free radicals. The major types of ROS include hydroxyl 

radical (HO
•
), superoxide anion radical (O2

•‾
), hydrogen peroxide (H2O2), singlet oxygen 

(
1
O2), nitric oxide radical (NO

•
), hypochlorite radical (ClO

‾
), and various lipid peroxides 

(ROOH) [6]. All are capable of irreversible oxidation of fundamental biological molecules 

like proteins, membrane lipids, nucleic acids, carbohydrate and other small essential 

molecules, resulting in cellular damage [7, 8].  

 

ROS are generated by a number of pathways. Most of the oxidants produced by cells occur as 

the consequence of normal aerobic metabolism in the mitochondrial electron transport 

system, oxidative burst from phagocytes, and the xenobiotic metabolism, i.e., detoxification 

of toxic substances. Consequently, things like vigorous exercise, which accelerates cellular 

metabolism; chronic inflammation, infections, and other illnesses; exposure to allergens; and 

exposure to drugs or toxins such as cigarette smoke, alcohol, pollution, pesticides, and 

herbicides may all contribute to an increase level of ROS in the cell [9]. 

 

Oxidative Stress 

 

Oxidative stress occurs when the balance between antioxidants and ROS are disrupted 

because of either depletion of antioxidants or accumulation of ROS. Increased oxidative 

stress at the cellular level can come about as a consequence of many factors, including 

exposure to alcohol, medications, trauma, cold, infections, poor diet, toxins, radiation, or 

strenuous physical activity. Oxidative stress due to higher production of ROS in the body 

may change DNA structure, result in modification of proteins and lipids, activation of several 

stress-induced transcription factors, and production of pro inflammatory and anti-

inflammatory cytokines. When oxidative stress occurs, cells attempt to counteract the oxidant 

effects by activation or silencing of genes encoding various defensive enzymes, transcription 

factors, and structural proteins [10, 11]. Protection against all of these processes is dependent 

upon the adequacy of various antioxidant substances that are derived either directly or 

indirectly from the diet.  

 

Antioxidant Defense System 
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There are several mechanisms to counteract the damage caused by the oxidative stress in the 

animal body. The basic and the most prominent protective mechanisms of the body are the 

antioxidant defense systems. The term antioxidant has been defined as any substance that 

delays or inhibits oxidative damage to a target molecule. These molecules are stable enough 

to neutralize free radicals by donating electrons [12]. Antioxidants catalyze the breakdown or 

conversion of ROS into more stable components by various biochemical pathways. The 

antioxidant defense system comprises of various enzymatic and both water and lipid soluble 

non-enzymatic antioxidants [13-15]. If the antioxidant system is unable to eliminate or 

neutralize the excess ROS, there is an increased risk of oxidative damage [16-18].  

Enzymatic Antioxidants 

 

The antioxidant enzymes provide the first line of cellular defense to oxidative damage due to 

ROS. In the animal body the main antioxidant enzymes which can play a crucial role in the 

ROS detoxification process include superoxide dismutase (SOD), catalase (CAT), glutathione 

peroxidase (GPx), glutathione reductase (GR), glutathione S-transferease (GST) and xanthine 

oxidase (XOD) etc. [19-21]. As with other antioxidant metabolites, the contributions of these 

enzymes to antioxidant defenses can be hard to separate from one another. 

 

Superoxide dismutase (SOD) 

 

Superoxide dismutases (EC 1.15.1.1) are a class of closely related enzymes that catalyze the 

breakdown of the superoxide anion into oxygen and hydrogen peroxide [22, 23]. The SODs 

remove O2
•‾
 by catalyzing its dismutation, one O2

•‾ 
being reduced to H2O2 and another 

oxidized to O2 . It removes O2
•‾
 and hence decreases the risk of OH

•
 formation via the metal 

catalyzed Haber-Weiss reaction [24]. SOD enzymes are present in almost all aerobic cells 

and in extracellular fluids [25]. These enzymes contain metal ion cofactors that, depending on 

the isozyme, can be copper, zinc, manganese or iron. In humans, the copper/zinc SOD is 

present in the cytosol, while manganese SOD is present in the mitochondrion [26]. There also 

exists a third form of SOD in extracellular fluids, which contains copper and zinc in its active 

sites [27]. The mitochondrial isozyme seems to be the most biologically important of these 

three. The prokaryotic Mn-SOD and Fe-SOD, and the eukaryotic Cu/Zn-SOD enzymes are 

dimers, whereas Mn-SODs of mitochondria are tetramers.  

 

Catalases (CAT) 

Catalase (EC 1.11.1.6) is a common enzyme found in nearly all living organisms exposed to 

oxygen such as bacteria, plants and animals. It is a very important enzyme in protecting the 

cell from oxidative damage by catalyzing the decomposition of hydrogen peroxide to water 

and oxygen [28]. Catalase has one of the highest turnover numbers of all enzymes i.e.one 

catalase molecule can convert millions of hydrogen peroxide molecules to water and oxygen 

each second [29]. Catalase is a tetramer of four polypeptide chains, each over 500 amino 

acids long [30]. It contains four porphyrin heme (iron) groups that allow the enzyme to react 

with the hydrogen peroxide. The optimum pH for human catalase is approximately 7 [31] . 

The pH optimum for other catalases varies between 4 and 11 depending on the species [32]. 

The optimum temperature also varies by species [33]. 

Glutathione reductase (GR) 
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Glutathione reductase (EC 1.8.1.7) also known as glutathione-disulfide reductase (GSR) is an 

enzyme that in humans is encoded by the GSR gene. It is a potential enzyme of the ascorbate-

glutathione (ASH-GSH) cycle and plays an essential role in defense system against ROS by 

sustaining the reduced status of GSH. Glutathione reductase catalyzes the reduction of 

glutathione disulfide (GSSG) to the sulfhydryl form glutathione (GSH), which is a critical 

molecule in resisting oxidative stress and maintaining the reducing environment of the cell 

[34-36]. Glutathione reductase functions as dimeric disulfide oxido-reductase and utilizes an 

FAD prosthetic group and NADPH to reduce one molar equivalent of GSSG to two molar 

equivalents of GSH. The glutathione reductase is conserved between all kingdoms. In 

bacteria, yeasts, and animals, one glutathione reductase gene is found; however, in plant 

genomes, two GR genes are encoded. Drosophila and Trypanosomes do not have any GR at 

all [37]. In these organisms, glutathione reduction is performed by either the thioredoxin or 

the trypanothione system, respectively [37, 38]. GR is involved in defence against oxidative 

stress, whereas, GSH plays an important role within the cell system, which includes 

participation in the ASH-GSH cycle, maintenance of the sulfhydryl (-SH) group and a 

substrate for GSTs [39].  

Glutathione S-transferases (GST) 

 

Glutathione S-transferases (EC 2.5.1.18), previously known as ligandins, comprise a family 

of eukaryotic and prokaryotic phase II metabolic isozymes. GSTs can constitute up to 10% of 

cytosolic protein in some mammalian organs [40, 41]. GSTs catalyze the conjugation of the 

reduced form of glutathione (GSH) via a sulfhydryl group on a wide variety of substrates in 

order to make the compounds more water-soluble [42, 43]. This activity detoxifies 

endogenous compounds such as peroxidised lipids and enables the breakdown of xenobiotics. 

GSTs may also bind toxins and function as transport proteins, which gave rise to the early 

term for GSTs, ligandin [44, 45].  

 

Glutathione peroxidase (GPX)  

Glutathione peroxidase (EC 1.11.1.9) is a selenium-containing enzyme that protects the 

organism from oxidative damage. The biochemical function of glutathione peroxidase is to 

reduce lipid hydroperoxides to their corresponding alcohols and to reduce free hydrogen 

peroxide to water. Several isozymes are encoded by different genes, which vary in cellular 

location and substrate specificity. Glutathione peroxidase 1 (GPx1) is the most abundant 

version, found in the cytoplasm of nearly all mammalian tissues and is a very efficient 

scavenger of hydrogen peroxide, while glutathione peroxidase 4 (GPx4) is most active with 

lipid hydroperoxides. It is expressed in nearly every mammalian cell, though at much lower 

levels. Glutathione peroxidase 2 (GPx2) is an intestinal and extracellular enzyme, while 

glutathione peroxidase 3 (GPx3) is extracellular, especially abundant in plasma [46]. So far, 

eight different isoforms of glutathione peroxidase (GPx1-8) have been identified in humans. 

Xanthine oxidase (XOD) 

Xanthine oxidase (XOD, EC 1.17.3.2) is an essential enzyme that converts hypoxanthine to 

xanthine, subsequent to uric acid. These enzymes, contain FAD, molybdenum and Iron, are 

exclusively found in liver, intestine and little amount in other tissues of animals [47]. 

Xanthine oxidase plays a vital role in transformation of toxic ammonia into nontoxic uric 

acid. It produces hydrogen peroxide which is very dangerous to the animal, and then it 
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converts into HO and O2. Further, the uric acid may act as an antioxidant and free radical 

scavenger protects the cells from oxidative damage [48, 49].  

Nonenzymatic Antioxidants 

 

The major nonenzymatic antioxidants comprise of various low-molecular-weight compounds, 

such as thiol (sulfhydryl) group containing glutathione, vitamins (vitamins C and E), β-

carotene, uric acid, melatonin etc. 

Glutathione 

Glutathione is a cysteine-containing peptide found in most forms of aerobic life [50]. It is not 

required in the diet and is instead synthesized in cells from its constituent amino acids [51]. 

Glutathione has antioxidant properties since the thiol group in its cysteine moiety is a 

reducing agent and can be reversibly oxidized and reduced. It can act as a scavenger for 

hydroxyl radicals, singlet oxygen, and various electrophiles. Reduced glutathione reduces the 

oxidized form of the enzyme glutathione peroxidase, which in turn reduces hydrogen 

peroxide (H2O2), a dangerously reactive species within the cell. Reduced glutathione also 

donates protons to membrane lipids and protects them from oxidant attacks [52]. In addition, 

it plays a key role in the metabolism and clearance of xenobiotics, acts as a cofactor in certain 

detoxifying enzymes, participates in transport, and regenerates antioxidants such and 

Vitamins E and C to their reactive forms. In cells, glutathione is maintained in the reduced 

form by the enzyme glutathione reductase [53]. The ratio of GSSG/GSH present in the cell is 

a key factor in properly maintaining the oxidative balance of the cell. In some organisms 

glutathione is replaced by other thiols, such as by mycothiol in the Actinomycetes, 

bacillithiol in some Gram-positive bacteria, [54, 55] or by trypanothione in the Kinetoplastids 

[56, 57]. 

Vitamin C 

Ascorbic acid or "vitamin C" is a monosaccharide oxidation-reduction (redox) catalyst found 

in both animals and plants. It is, maintained in the cells, in its reduced form by reaction with 

glutathione, which can be catalysed by protein disulfide isomerase and glutaredoxins [58, 

59]. Due to its redox catalyst property, it can reduce, and thereby neutralize, reactive oxygen 

species such as hydrogen peroxide [60]. It converts vitamin E free radicals back to vitamin E. 

Its plasma levels have been shown to decrease with age [61, 62]. 

Vitamin E 

Vitamin E is the collective name for a set of eight related tocopherols and tocotrienols, which 

are fat-soluble vitamins with antioxidant properties [63, 64]. Of these, the α-tocopherol form 

is the most important lipid-soluble antioxidant, and it protects membranes from oxidation by 

reacting with lipid radicals produced in the lipid peroxidation chain reaction [63, 65]. This 

removes the free radical intermediates and prevents the propagation reaction from continuing. 

This reaction produces oxidised α-tocopheroxyl radicals that can be recycled back to the 

active reduced form through reduction by other antioxidants, such as ascorbate, retinol or 

ubiquinol [66]. It is evident that α-tocopherol efficiently protects glutathione peroxidase 4 

(GPX4)-deficient cells from cell death [67]. Vitamin E triggers apoptosis of cancer cells and 

inhibits free radical formations [68]. 
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Carotenoids (β-Carotene) 

 

Carotenoids are structurally and functionally a very diverse group of natural organic pigments 

of the isoprenoid type [69]. They occur ubiquitously in plants, phototropic bacteria and 

cyanobacteria [70]. Although not synthesized by humans and animals, they are also present in 

their blood and tissues. Fruits and vegetables constitute the major sources of carotenoid in the 

animal body and are important precursors of retinol (vitamin A). Carotenoids are known to be 

very efficient physical and chemical quenchers of singlet oxygen (
1
O2), as well as potent 

scavengers of other reactive oxygen species (ROS) [71-73]. Among the members of the 

carotenoids, primarily β-carotene has been found to react with peroxyl (ROO
-
), hydroxyl 

(OH
-
), and superoxide (O2

-
) radicals.96 Carotenoids show their antioxidant effects in low 

oxygen partial pressure but may have pro-oxidant effects at higher oxygen concentrations 

[74]. Carotenoids may also affect the apoptosis of cells [75]. 

Uric acid 

Uric acid is a powerful antioxidant and is a scavenger of singlet oxygen and hydroxyl 

radicals. At physiological concentrations, urate reduces the oxo-heme oxidant formed by 

peroxide reaction with hemoglobin, protects erythrocyte ghosts against lipid peroxidation, 

and protects erythrocytes from peroxidative damage leading to lysis [76]. Uric acid's 

antioxidant activities are also complex, given that it does not react with some oxidants, such 

as superoxide, but does act against peroxynitrite,[77] peroxides, and hypochlorous acid [78]. 

The plasma urate level in humans (about 300µM/L) is considerably higher than other 

antioxidant level, making it one of the major antioxidants in humans. 

Melatonin 

Melatonin, a pineal hormone, has been implicated in oxidative damage and aging process [79, 

80]. It has a potent antioxidant activity and is a potentially promising candidate for the 

control of aging and other ROS-mediated pathogenesis [81]. Unlike other antioxidants, 

melatonin does not undergo redox cycling. Thus once oxidized, melatonin cannot be reduced 

to its former state because it forms several stable end-products upon reacting with free 

radicals. Therefore, it has been referred to as a terminal (or suicidal) antioxidant [82]. 

Melatonin declines significantly with the increase in age [80]. This decline in melatonin 

coincides with the increased oxidative damage and pathogenesis. 

Effect of Pesticide Induced Oxidative Stress on Antioxidant Defense System  

Many pesticides have been shown to be associated with the induction of oxidative stress via 

formation of ROS and alterations in antioxidant or free oxygen radical scavenging enzyme 

systems [83-87]. 

Many scientific works have been reported the effect of pesticide induced oxidative damages 

on the antioxidant defense system of the various aquatic animals, laboratory experimental 

animals, in-vitro cell culture and even pesticide affected human being also. Amal et al. [88] 

have studied the effects of acute organophosphorus toxicity on the biomarkers of oxidative 

stress and apoptosis of the cell. They found significant decrease in the levels of reduced 

glutathione and catalase and increase in the level of malonyldialdehyde (MDA) (end product 

of lipid peroxidation) in acute organophosphate affected patients. Decreased GPx activity in 

gills, muscle, liver and brain of parathion treated goby fishes were reported [89]. In different 
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tissues of diazinon exposed Cyprinus carpio, a decreased GPx activity was also observed 

[90]. Box et al. [91] showed that organophosphate pesticide and exposure to environmental 

pollutants caused a significant reduction in CAT activities in different tissues of the brown 

bullhead fish, Ictalurus nebulosus and the mussel, Mytilus galloprovincialis, respectively. 

Whereas, Isik and Celik [92] reported in rainbow trout exposed to diazinon and methyl 

parathion a decrease in SOD activities in liver, gills and muscle tissues separately. Banaee et 

al. [19] found that the levels of total antioxidant capacity in hepatocytes of fishes exposed to 

diazinon were significantly decreased. They also observed the increased SOD and CAT 

activities due to over production of superoxide radicals and H2O2 in hepatocytes of diazinon 

exposed fishes. Following 2-chlorophenol exposure, alterations in SOD and CAT activities in 

fish, Carassius auratus were reported [93]. Naveed and Janaiah [94] observed the reduction 

in XOD activity in liver of fish, Channa punctatus exposed to an organophosphate 

insecticide, triazophos leads to increase in cellular oxidative damage.  

Elisi et al. [95] have shown that carbamate exposure resulted in depletion of intracellular 

reduced glutathione (GSH) content and a decrease in GSH/GSSG ratio in the mammalian 

CHO-K1 cells accompanied by the induction of GR and GPx activities. A drastic increase in 

the activities of CAT and SOD and decrease in the GST activity were observed in RBC´s 

membrane of Wistar rats exposed to a single sub-acute dose of a carbamate pesticide, 

carbofuran (CF). The erythrocytes fragility as well as oxidative stress induced by pesticides 

got recovered near to normal by vitamin C treatment [96]. Recently, generation of ROS in rat 

brain and liver due to chronic oral administration of carbofuran has been reported [97]. The 

results demonstrated that carbofuran treatment caused significant increase in lipid 

peroxidation (LPO) and significantly induced activities of antioxidant enzymes, SOD and 

CAT in rat brain. 

In another study, endosulfan has been reported to induce oxidative stress in rat’s heart as 

there was significant rise in the activities of SOD, GPx and CAT which could be prevented 

by use of vitamin E as an antioxidant [98]. Some workers [99, 100] have demonstrated that 

acetofenate, an organochlorine insecticide treatment can cause macrophage apoptosis by 

inducing oxidative stress on mouse macrophage cell line RAW264.7. In the rat cerebral 

hemisphere, the effects of oral administration of hexachlorocyclohexane (HCH, lindane) on 

the extent of LPO and levels of antioxidant enzymes have been evaluated [101]. They 

reported elevated level of LPX after 7 days of treatment in crude homogenate and decreased 

activities of cerebral CAT and GPx activity (both selenium-dependent and –independent 

isoenzymes) throughout the treatment period. The involvement of the antioxidant enzymes 

(CAT and GPx) in defense against the genotoxicity induced by phosphamidon and dieldrin 

has been demonstrated in primary mouse lung fibroblast cultures [102]. These two pesticides 

damaged DNA through the generation of ROS and therefore produce oxidative stress. The 

CAT activity decreased only in the damage induced by phosphamidon, while GPx protected 

against damage induced by both phosphamidon and dieldrin.  

 

A survey of literature indicates that not much work has been conducted on evaluation of 

pyrethrin induced oxidative stress. However, some reports indicate that certain pyrethrins 

have the potential to generate oxidative stress in various tissues of some mammalian systems 

[103]. Exposure of deltamethrin has been shown to induce oxidative stress and cause 

perturbations in various biochemical parameters including LPO, antioxidant and 

neurotransmission enzymes; the toxicity however, has been shown to be reduced by treatment 

with vitamin E [104]. In rats brain and liver, cypermethrin induced oxidative stress has been 

observed which got ameliorated by treatment with vitamin E or allopurinol [105]. In another 

http://www.intechopen.com/books/insecticides-development-of-safer-and-more-effective-technologies/physiological-dysfunction-in-fish-after-insecticides-exposure#B35
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study, the use of vitamin E with selenium has been reported to protect the rats from 

cypermethrin induced oxidative stress [106]. Gabbianelli et al. [107] have reported that 

cypermethrin treatment in rats induced a significant increase in the lipid peroxidation and a 

significant decrease in the acitivity of GPx.  

Conclusion 

The indiscriminate application of the chemical pesticides has caused various environmental 

hazards and health related issues. All reported studies in humans or animals support that 

pesticides induce oxidative stress due to the production of ROS leading to development of 

different pathophysiological conditions of many diseases. Although the cells are equipped 

with antioxidant defense mechanisms to detoxify the harmful effects of ROS, cellular damage 

occurs when there is production of excess ROS or when the antioxidant defense system is not 

properly functioning. A great deal of research has also established that the induction of the 

cellular antioxidant machinery is important for protection against the oxidative damages due 

to ROS. During the pesticide metabolism or the detoxification process, a biochemical 

alteration in ROS and variations in enzymatic and non-enzymatic antioxidant levels must 

occur, which indicate a stressful condition of the cell. 

   

So, in the animal body, cellular ROS and the ROS scavenging antioxidant molecules could be 

the potential biomarkers of the oxidative stress due to pesticide toxicity. Further research of 

the antioxidant defense system and ROS in the molecular and genetic level is warranted not 

only to deal with the oxidative damages but also to cure various pathophysiological disorders.    
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